Consider the Poisson equation with Dirichlet BC
The corresponding weak formulation is: Find
Here,
Let
We impose the boundary condition by setting
where
The corresponding discrete problem is: Find
Here,
Note that
But,
Let
Find
Since
Now we obtained a set of equations
This can be rewritten as
where
Boundary Condition:
Letting
where
For given finite element space
Using the basis representation, we obtain the corresponding linear system
where
FiniteElementCollection
(Par)Mesh
FiniteElementCollection
We use FiniteElementCollection
to represent a local finite element space.
Examples are: (
H1_FECollection
- Continuous DG_FECollection/L2_FECollection
- Discontinuous RT_FECollection
- ND_FECollection
- Code Example:
FiniteElementCollection *fec = new DG_FECollection(order, dim);
FiniteElementCollection *fec = new H1_FECollection(order, dim);
Mesh
class to represent meshes.Mesh
object can be created either from a fileMesh mesh("path/to/meshfile.mesh");
Mesh mesh = Mesh::MakeCartesian2D(nx, ny, Element::QUADRILATERAL); // Uniform 2D rectangular mesh
Mesh mesh = Mesh::MakeCartesian2D(nx, ny, Element::TRIANGLE);
mesh.UniformRefinement(); // Uniform refine
mesh.RefineByError(err, tol); // Refine where err > tol
mesh.Save("path/to/meshfile.mesh");
FiniteElementCollection
and Mesh
, we can define a finite element space FiniteElementSpace
class to store the informationconst int dim = 2;
const int order = 1;
const int nx = ny = 10;
FiniteElementCollection *fec = new H1_FECollection(order, dim);
Mesh mesh = Mesh::MakeCartesian2D(nx, ny, Element::QUADRILATERAL);
FiniteElementSpace fes(&mesh, fec); // P1-C0 Finite element space
FiniteElementCollection
, e.g., RT_FECollection
FiniteElementCollection
const int vdim = 2;
FiniteElementSpace vfes(&mesh, fec, vdim); // P1-C0 vector FE space
GridFunction u(&fes);
GridFunction
stores the primal vector, [c_1, c_2, ..., c_N]
associated with fes
).const int order = 2; // order of polynomial
const int nx = ny = 4; // number of elements in each axis
FiniteElementCollection *fec = new H1_FECollection(order, dim); // C0, Quadratic Polynomial
Mesh mesh = Mesh::MakeCartesian2D(nx, ny, Element::QUADRILATERAL); // Uniform quadrilateral mesh
const int dim = mesh.Dimension(); // spatial dimension, 2
// You can also define a vector FE space
const int vdim = 2; // vector dimension
FiniteElementSpace fespace(&mesh, fec, vdim); // [C0-Q2 space]^2
GridFunction u(&fespace);
BilinearForm
to represent such operatorBilinearForm a_h(&fespace);
MixedBilinearForm a_h(&fespace1, &fespace2);
a_h
.a_h.AddDomainIntegrator(new DiffusionIntegrator()); // a_h += (∇u, ∇v)
a_h.AddDomainIntegrator(new MassIntegrator()); // a_h += (u, v)
DiffusionIntegrator
and MassIntegrator
are BilinearFormIntegrator
fem/bilininteg.hpp
LinearForm
to represent such operatorLinearForm b_h(&fespace);
b_h
.b_h.AddDomainIntegrator(new DomainLFIntegrator(f)); // b_h += (f,v)
b_h.AddBoundaryIntegrator(new BoundaryLFIntegrator(g_N));// b_h += (g_N, v)_e
DomainLFIntegrator
and BoundaryLFIntegrator
are LinearFormIntegrator
fem/lininteg.hpp
R_T
, P_T
: Mapping between the global and local
R_T*A = A(I_T, I_T) = A_loc
B
, Q
: Mapping between basis and values at points.
B
can be function value, derivative value, etc.D
: Operation on quadrature values (dot products, weight, ...)
D(U, Ux, Uy, V, Vx, Vy) = Ux*Vx + Uy*Vy
void MassIntegrator::AssembleElementMatrix(
const FiniteElement &el, ElementTransformation &Trans, DenseMatrix &elmat)
{
// INPUT el: Local finite element: basis, dof, ...
// INPUT Trans: Local mesh information. e.g., element location, Jacobian
// OUTPUT elmat: resulting (ϕ_j, ϕ_i) where 0 ≤ i,j ≤ nd is local dof
int nd = el.GetDof(); // the number of basis related to current element
double w; // store weight
Vector shape; // store basis function values at an integration point
shape.SetSize(nd);
elmat.SetSize(nd); // set output size
// Determine integration rule in the location
const IntegrationRule *ir = IntRule ? IntRule : &GetRule(el, el, Trans);
elmat = 0.0; // initialize with 0
for (int i = 0; i < ir->GetNPoints(); i++) // for each integration point
{
// Get current integration point (x_i, w_i)
const IntegrationPoint &ip = ir->IntPoint(i);
Trans.SetIntPoint (&ip);
//
el.CalcPhysShape(Trans, shape);
// update weight based on the element jacobian and integration weight
w = Trans.Weight() * ip.weight;
// elmat = elmat + w * (shape * shape^T)
// Why? DIY
AddMult_a_VVt(w, shape, elmat);
}
} // Also see, DiffusionIntegrator, MixedVectorDivergenceOperator, ...
f
when we define local linear formLinearForm b_h(&fespace);
b_h.AddDomainIntegrator(new DomainLFIntegrator(f)); // b_h += (f,v)
f
is a Coefficient
. More specifically, FunctionCoefficient
.Coefficient
represents a functionConstantCoefficient one_cf(1.0);
FunctionCoefficient f([](Vector &x){return sin(pi*x[0])*sin(pi*x[1]);});
FunctionCoefficient g([](Vector &x, double t){return exp(-t)*sin(pi*x[0]);});
GridFunctionCoefficient u_cf(&u_h); // Use GridFunction as a function
u_h.ProjectCoefficient(f); // interpolate given function f
b_h.AddDomainIntegrator(new DomainLFIntegrator(f)); // b_h += (f,v)
MFEM
.# Mesh faces/edges on the boundary, e.g. triangles (2)
boundary
8 # 8 boundaries
1 1 0 1 # Bottom (1), Segment, vertex 0 - vertex 1
1 1 1 2 # Borrom (1), Segment, vertex 1 - vertex 2
2 1 2 4 # Right (2), Segment, vertex 2 - vertex 4
2 1 4 8 # Right (2), Segment, vertex 4 - vertex 8
...
bottom
,Mesh mesh(mesh_file);
// create an integer array of size, the number of boundary attributes
Array<int> ess_bdr(mesh.bdr_attributes.Max()); // in this case, 4
ess_bdr = 0; // initialize with 0
ess_bdr[0] = 1; // first boundary, bottom, is essential boundary
// stores all degrees of freedom on the Dirichlet Boundary
Array<int> ess_tdof_list;
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list); // Obtain related dofs
BilinearForm a_h
and LinarForm b_h
, we canOperatorPtr A;
Vector B, X;
a_h.FormLinearSystem(ess_tdof_list, u, b_h, A, X, B);
u
: GridFunction
, the solution with specified value on essential boundaryA
: OperatorPtr
or SparseMatrix
, the resulting matrix B
: Vector
, the resulting load vector X
: Vector
, the vector containing coefficient, MFEM
.UMFPackSolver
(from SuiteSparse
), and MUMPS
(from PETSc
)CG
: (Preconditioned) Conjugate gradient method for SPD systemCGSolver cg();
cg.SetOperator(*A);
cg.Mult(B, X);
GMRES
: (Preconditioned) generalized minimal residual method for general systemGMRESSolver gmres();
gmres.SetOperator(*A);
gmres.Mult(B, X);
Vector X
.GridFunction
by usinga_h.RecoverFEMSolution(X, b, u);
u.Save(solution.gf);
sout << "solution\n" << mesh << u; // plot solution
sout << "view 0 0\n"; // top view
sout << flush; // draw
ex1.cpp
and glvis
.glvis
in the background!ParaView
.make parallel
- Requires additional dependencies, see instruction.Par
before types. See, ex0p.cpp.Mpi::Init(); // Initialize MPI
H1_FECollection fec(order, dim);
ParMesh mesh(mesh_file); // Elements are distributed in each process
ParFiniteElementSpace fes(&mesh, &fec);
ParBilinearForm a_h(&fes);
ParLinearForm b_h(&fes);
ParGridFunction u_h(&fes);
a_h.AddDomainIntegrator(new DiffusionIntegrator());
ConstantCoefficient one_cf(1.0);
b_h.AddDomainIntegrator(new DomainLFIntegrator(one_cf));
...
mpirun -np <num_process> <file>
https://dohyun-cse.github.io/mfem-tutorial
Hands-on session: ex0.cpp
C++
related questions!# FunctionCoefficient * On the other hand, `FunctionCoefficient` represents a function $\mathbb{R}^n\rightarrow\mathbb{R}$. ```cpp // 2D coordinates x=(x,y) ↦ sin(x)*sin(y) FunctionCoefficient f([](const Vector& x){return sin(x[0])*sin(x[1])}); ``` * For a vector-valued function, we use `VectorFunctionCoefficient` ```cpp // 2D coordinates x=(x,y) ↦ (sin(x), sin(y)) VectorFunctionCoefficient f(2, [](const Vector &x, Vector y){y[0] = sin(x[0]); y[1] = sin(x[1])}); ``` * When you want to compute its value at `x`, then use ```cpp Vector x(2); x = 0.5; // equivalent to x[0] = x[1] = 0.5; const double value = f.Eval(x); // if f:R^n → R Vector y(2); f.Eval(x, y); // if f:R^n → R^d ``` ---
# FormIntegrator * Now you have a bilinear form $a_h(\cdot,\cdot)$, `BilinearForm a` * But you did not specify its actual implementation $$ a_h(u, v) = \sum_{T\in\mathcal{T}_h}(∇ u, ∇ v)_T $$ * The local bilinear form $(∇ u, ∇ v)_T$ is called `BilinearFormIntegrator`. * This class should contains: * `AssembleElementMatrix`: if it is an element integrator, $(\cdot,\cdot)_T$ * `AssembleFaceMatrix`: if it is a face integrator, $(\cdot,\cdot)_F$ * ... see, <a href="https://docs.mfem.org/html/bilininteg_8hpp_source.html" target="_blank">`fem/bilininteg.hpp`</a> * Examples are: * `MassIntegrator`: $(u, v)_T$ * `DiffusionIntegrator`: $(∇ u, ∇ v)_T$ * `MixedVectorDivergenceIntegrator`: $(∇ ⋅ u, v)_T$ * `TransposeIntegrator`: convert $(f(u), g(v))$ to $(f(v), g(u))$ --- # FormIntegrator - continued * You can add `BilinearFormIntegrator` to `BilinearForm` ```cpp BilinearForm a_h(&fespace); a_h.AddDomainIntegrator(new DiffusionIntegrator); // a_h = ∑_T(∇ u, ∇ v)_T a_h.AddDomainIntegrator(new MassIntegrator); // a_h = ∑_T [ (∇ u, ∇ v)_T + (u, v)_T ] a_h.AddInteriorFaceIntegrator(new SomeFaceIntegrator); // a_h = ... + ∑_{F_i}(⋅⋅⋅, ⋅⋅⋅)_F a_h.AddBoundaryIntegrator(new SomeFaceIntegrator); // a_h = ... + ∑_{F_b}(⋅⋅⋅, ⋅⋅⋅)_F ``` * For a `LinearForm`, you can use `LinearFormIntegrator` * The most useful one is `DomainLFIntegrator` and `BoundaryLFIntegrator` ```cpp LinearForm b_h(&fespace); b_h.AddDomainIntegrator(new DomainLFIntegrator(f)); // b_h = ∑_T (f, v) b_h.AddBoundaryIntegrator(new BoundaryLFIntegrator(g, nbc_bdr)); // b_h = ... + ∑_{F_{b,N}}(g_N, v)_F ``` ---
---
# Assembly Level
```cpp
a_h.SetAssemblyLevel(AssemblyLevel::<LEVEL>)
```
* `FULL` (or `LEGACY`)
* Construct global sparse matrix
* `ELEMENT`
* Assemble only local matrices `A_loc`. `Ax` can be computed element-wisely,
$$
\texttt{A*x}=\sum_T P_T*(\texttt{A\_loc}*\texttt{x\_loc})
$$
* `PARTIAL`
* Assemble only on a "reference" element, and other computations are done on-the-fly. See, <a href="http://www.lcad.icmc.usp.br/~buscaglia/teaching/fem/2015/slides20150429.pdf" target="_blank">here</a>
* `NONE`
* Store nothing, everything is on-the-fly.